2.2 The Definition of the Derivative

(x_0, f(x_0)) \ , \ (x_0 + \Delta x, f(x_0 + \Delta x))

y - f(x_0) = m (x - x_0)

m=\frac{f(x_0+\Delta x) - f(x_0)}{x_0+\Delta x - x_0} = \frac{f(x_0+\Delta x) - f(x_0)}{\Delta x}

\frac{d}{dx} f(x) = \frac{df}{dx} \equiv \lim\limits_{x \to 0}\frac{f(x+\Delta x) - f(x)}{\Delta x}

\begin{aligned} \frac{df}{dx} &= \lim\limits_{x \to 0}\frac{f(x+\Delta x) - f(x)}{\Delta x }\\ \frac{df}{dx} &= \lim\limits_{x \to 0}\frac{\left((x+\Delta x)^2 - (x+\Delta x) - 2\right) - \left(x^2 - x - 2\right)}{\Delta x}\\ \frac{df}{dx} &= \lim\limits_{x \to 0}\frac{(x^2+2x(\Delta x) + (\Delta x)^2 - x - \Delta x - 2 - x^2 + x + 2}{\Delta x}\\ \frac{df}{dx} &= \lim\limits_{x \to 0}\frac{\cancel{x^2}+2x(\Delta x) + (\Delta x)^2 \cancel{- x} - \Delta x + \cancel{- 2} \cancel{- x^2} \cancel{+ x} \cancel{+ 2}}{\Delta x}\\ \frac{df}{dx} &= \lim\limits_{x \to 0}\frac{2x(\Delta x) + (\Delta x)^2 - \Delta x}{\Delta x}\\ \frac{df}{dx} &= \lim\limits_{x \to 0}2x + \Delta x - 1\\ \frac{df}{dx} &= 2x + 0 - 1\\ \frac{df}{dx} &= 2x - 1\\ \end{aligned}